Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 21204, 2022 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-36550187

RESUMO

Ozone is a phytotoxic air pollutant that has various damaging effects on plants, including chlorosis and growth inhibition. Although various physiological and genetic studies have elucidated some of the mechanisms underlying plant ozone sensitivity and lesion development, our understanding of plant response to this gas remains incomplete. Here, we show evidence for the involvement of certain apoplastic proteins called phytocyanins, such as AtUC5, that protect against ozone damage. Two representative ozone-inducible responses, chlorosis and stomatal closure, were suppressed in AtUC5-overexpressing plants. Analysis of transgenic plants expressing a chimeric protein composed of AtUC5 fused to green fluorescent protein indicated that this fusion protein localises to the apoplast of plant cells where it appears to suppress early responses to ozone damage such as generation or signalling of reactive oxygen species. Moreover, yeast two-hybrid analyses suggest that AtUC5 may physically interact with stress-related proteins such as copper amine oxidase and late embryogenesis abundant protein-like protein. In addition to AtUC5, other examined phytocyanins such as AtUC6 and AtSC3 could confer ozone tolerance to plants when overexpressed in A. thaliana, suggesting that these proteins act together to protect plants against oxidative stress factors.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ozônio , Arabidopsis/metabolismo , Ozônio/farmacologia , Ozônio/metabolismo , Estresse Oxidativo , Proteínas de Arabidopsis/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Regulação da Expressão Gênica de Plantas
2.
Plant Cell Physiol ; 58(5): 914-924, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28339978

RESUMO

An ozone-sensitive mutant was isolated from T-DNA-tagged lines of Arabidopsis thaliana. The T-DNA was inserted at a locus on chromosome 3, where two genes encoding glycolate oxidases, GOX1 and GOX2, peroxisomal enzymes involved in photorespiration, reside contiguously. The amounts of the mutant's foliar transcripts for these genes were reduced, and glycolate oxidase activity was approximately 60% of that of the wild-type plants. No difference in growth and appearance was observed between the mutant and the wild-type plants under normal conditions with ambient air under a light intensity of 100 µmol photons m-2 s-1. However, signs of severe damage, such as chlorosis and ion leakage from the tissue, rapidly appeared in mutant leaves in response to ozone treatment at a concentration of 0.2 µl l-1 under a higher light intensity of 350 µmol photons m-2 s-1 that caused no such symptoms in the wild-type plant. The mutant also exhibited sensitivity to sulfur dioxide and long-term high-intensity light. Arabidopsis mutants with deficiencies in other photorespiratory enzymes such as glutamate:glyoxylate aminotransferase and hydroxypyruvate reductase also exhibited ozone sensitivities. Therefore, photorespiration appears to be involved in protection against photooxidative stress caused by ozone and other abiotic factors under high-intensity light.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ozônio/toxicidade , Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Hidroxipiruvato Redutase/genética , Hidroxipiruvato Redutase/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Transaminases/genética , Transaminases/metabolismo
3.
Rice (N Y) ; 7(1): 10, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24987489

RESUMO

BACKGROUND: Throughout Asia, including Japan, rice plants are cultivated in a wide range of areas from lowlands to highlands and are frequently exposed to fog, including acid fog. Some physiological studies have shown that acid fog can be a stress factor for plants. We analyzed the gene expression profiles of rice plants treated with artificially prepared simulated acid fog (SiAF) or simulated neutral fog (SiNF) for 1 or 7 days. RESULTS: Microarray analysis results suggested that both the SiAF and the SiNF treatments induced the expression of genes involved in the defense and stress responses in rice plants. Induction of such genes was detected in plants treated with SiAF for 1 day, and the number of induced genes increased in plants treated with SiAF for 7 days. The genes for defense and stress responses were also induced by SiNF for 7 days, although they were not induced by SiNF for 1 day. The gene expression profiles of the SiAF-treated and the SiNF-treated plants were compared to those of plants treated with other stress factors. The comparison revealed that both SiAF and SiNF treatments have similar effects to biotic stresses and ozone stress. The genes encoding NADPH oxidase and germin, which function in apoplasts, were also induced by SiAF, SiNF and biotic stresses. CONCLUSIONS: These findings suggest that both the SiAF and the SiNF treatments may result in oxidative stress through the apoplastic production of reactive oxygen species.

4.
Physiol Plant ; 136(3): 284-98, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19453511

RESUMO

Ozone produces reactive oxygen species and induces the synthesis of phytohormones, including ethylene and salicylic acid. These phytohormones act as signal molecules that enhance cell death in response to ozone exposure. However, some studies have shown that ethylene and salicylic acid can instead decrease the magnitude of ozone-induced cell death. Therefore, we studied the defensive roles of ethylene and salicylic acid against ozone. Unlike the wild-type, Col-0, Arabidopsis mutants deficient in ethylene signaling (ein2) or salicylic acid biosynthesis (sid2) generated high levels of superoxide and exhibited visible leaf injury, indicating that ethylene and salicylic acid can reduce ozone damage. Macroarray analysis suggested that the ethylene and salicylic acid defects influenced glutathione (GSH) metabolism. Increases in the reduced form of GSH occurred in Col-0 6 h after ozone exposure, but little GSH was detected in ein2 and sid2 mutants, suggesting that GSH levels were affected by ethylene or salicylic acid signaling. We performed gene expression analysis by real-time polymerase chain reaction using genes involved in GSH metabolism. Induction of gamma-glutamylcysteine synthetase (GSH1), glutathione synthetase (GSH2), and glutathione reductase 1 (GR1) expression occurred normally in Col-0, but at much lower levels in ein2 and sid2. Enzymatic activities of GSH1 and GSH2 in ein2 and sid2 were significantly lower than in Col-0. Moreover, ozone-induced leaf damage observed in ein2 and sid2 was mitigated by artificial elevation of GSH content. Our results suggest that ethylene and salicylic acid protect against ozone-induced leaf injury by increasing de novo biosynthesis of GSH.


Assuntos
Arabidopsis/metabolismo , Etilenos/metabolismo , Glutationa/biossíntese , Ozônio/farmacologia , Reguladores de Crescimento de Plantas/metabolismo , Ácido Salicílico/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Transferases Intramoleculares/genética , Transferases Intramoleculares/metabolismo , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo
5.
Plant Cell Physiol ; 49(1): 2-10, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18084014

RESUMO

To understand better the plant response to ozone, we isolated and characterized an ozone-sensitive (ozs1) mutant strain from a set of T-DNA-tagged Arabidopsis thaliana ecotype Columbia. The mutant plants show enhanced sensitivity to ozone, desiccation and sulfur dioxide, but have normal sensitivity to hydrogen peroxide, low temperature and high light levels. The T-DNA was inserted at a single locus which is linked to ozone sensitivity. Identification of the genomic sequences flanking the T-DNA insertion revealed disruption of a gene encoding a transporter-like protein of the tellurite resistance/C(4)-dicarboxylate transporter family. Plants with either of two different T-DNA insertions in this gene were also sensitive to ozone, and these plants failed to complement ozs1. Transpiration levels, stomatal conductance levels and the size of stomatal apertures were greater in ozs1 mutant plants than in the wild type. The stomatal apertures of ozs1 mutant plants responded to light fluctuations but were always larger than those of the wild-type plants under the same conditions. The stomata of the mutant and wild-type plants responded similarly to stimuli such as light, abscisic acid, high concentrations of carbon dioxide and ozone. These results suggest that OZS1 helps to close stomata, being not involved in the responses to these signals.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Ozônio/toxicidade , Estômatos de Plantas/efeitos dos fármacos , Estômatos de Plantas/fisiologia , Arabidopsis/efeitos dos fármacos , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica de Plantas , Peróxido de Hidrogênio/farmacologia , Mutação , Filogenia
6.
Plant Cell ; 19(7): 2140-55, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17644730

RESUMO

GIBBERELLIN INSENSITIVE DWARF1 (GID1) encodes a soluble gibberellin (GA) receptor that shares sequence similarity with a hormone-sensitive lipase (HSL). Previously, a yeast two-hybrid (Y2H) assay revealed that the GID1-GA complex directly interacts with SLENDER RICE1 (SLR1), a DELLA repressor protein in GA signaling. Here, we demonstrated, by pull-down and bimolecular fluorescence complementation (BiFC) experiments, that the GA-dependent GID1-SLR1 interaction also occurs in planta. GA(4) was found to have the highest affinity to GID1 in Y2H assays and is the most effective form of GA in planta. Domain analyses of SLR1 using Y2H, gel filtration, and BiFC methods revealed that the DELLA and TVHYNP domains of SLR1 are required for the GID1-SLR1 interaction. To identify the important regions of GID1 for GA and SLR1 interactions, we used many different mutant versions of GID1, such as the spontaneous mutant GID1s, N- and C-terminal truncated GID1s, and mutagenized GID1 proteins with conserved amino acids replaced with Ala. The amino acid residues important for SLR1 interaction completely overlapped the residues required for GA binding that were scattered throughout the GID1 molecule. When we plotted these residues on the GID1 structure predicted by analogy with HSL tertiary structure, many residues were located at regions corresponding to the substrate binding pocket and lid. Furthermore, the GA-GID1 interaction was stabilized by SLR1. Based on these observations, we proposed a molecular model for interaction between GA, GID1, and SLR1.


Assuntos
Giberelinas/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Receptores de Superfície Celular/metabolismo , Alelos , Sequência de Aminoácidos , Relação Dose-Resposta a Droga , Giberelinas/farmacologia , Modelos Biológicos , Dados de Sequência Molecular , Mutagênese , Oryza/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Proteínas de Plantas/química , Ligação Proteica/efeitos dos fármacos , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Receptores de Superfície Celular/química , Saccharomyces cerevisiae/efeitos dos fármacos , Solubilidade/efeitos dos fármacos , Relação Estrutura-Atividade , Técnicas do Sistema de Duplo-Híbrido
7.
Theor Appl Genet ; 113(3): 419-28, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16733757

RESUMO

Rice (Oryza sativa ssp. japonica cv. Nipponbare) harbors a ribosomal RNA gene (rDNA) cluster in the nucleolar-organizing region at the telomeric end of the short arm of chromosome 9. We isolated and sequenced two genomic clones carrying rice rDNA fragments from this region. The rice rDNA repeat units could be classified into three types based on length, which ranged from 7,928 to 8,934 bp. This variation was due to polymorphism in the number of 254-bp subrepeats in the intergenic spacer (IGS). Polymerase chain reaction (PCR) analysis suggested that the rDNA units in rice vary widely in length and that the copy number of the subrepeats in the IGS ranges from 1 to 12 in the rice genome. PCR and Southern blot analyses showed that most rDNA units have three intact and one truncated copies of the subrepeats in the IGS, and distal (telomere-side) rDNA units have more subrepeats than do proximal (centromere-side) ones. Both genomic clones we studied contained rDNA-flanking DNA sequences of either telomeric repeats (5'-TTTAGGG-3') or a chromosome-specific region, suggesting that they were derived from the distal or proximal end, respectively, of the rDNA cluster. A similarity search indicated that retrotransposons appeared more frequently in a 500-kb portion of the proximal rDNA-flanking region than in other subtelomeric regions or sequenced regions of the genome. This study reveals the repetitive nature of the telomeric end of the short arm of chromosome 9, which consists of telomeric repeats, an rDNA array, and a retrotransposon-rich chromosomal region.


Assuntos
Cromossomos de Plantas , DNA Ribossômico/química , Oryza/genética , Sequência de Bases , DNA Espaçador Ribossômico/química , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Retroelementos , Alinhamento de Sequência , Análise de Sequência de DNA
8.
Plant J ; 46(2): 206-17, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16623884

RESUMO

Telomeres, which are important for chromosome maintenance, are composed of long, repetitive DNA sequences associated with a variety of telomere-binding proteins. We characterized the organization and structure of rice telomeres and adjacent subtelomere regions on the basis of cytogenetic and sequence analyses. The length of the rice telomeres ranged from 5.1 to 10.8 kb, as revealed by both fibre-fluorescent in situ hybridization and terminal restriction-fragment assay. Physical maps of the chromosomal ends were constructed from a fosmid library. This facilitated sequencing of the telomere regions of chromosomes 1S, 2S, 2L, 6L, 7S, 7L and 8S. The resulting sequences contained conserved TTTAGGG telomere repeats, which indicates that the physical maps partly covered the telomere regions of the respective chromosome arms. These repeats were organized in the order of 5'-TTTAGGG-3' from the chromosome-specific region, except in chromosome 7S, in which seven inverted copies also existed in tandem array. Analysis of the telomere-flanking regions revealed the occurrence of deletions, insertions, or chromosome-specific substitutions of single nucleotides within the repeat sequences at the junction between the telomere and subtelomere. The sequences of the 500-kb regions of the seven chromosome ends were analysed in detail. A total of 598 genes were predicted in the telomeric regions. In addition, repetitive sequences derived from various kinds of retrotransposon were identified. No significant evidence for segmental duplication could be detected within or among the subtelomere regions. These results indicate that the rice chromosome ends are heterogeneous in both sequence and characterization.


Assuntos
Mapeamento Cromossômico , Cromossomos de Plantas , Oryza/genética , Telômero/genética , Sequência de Bases , DNA de Plantas/genética , Hibridização in Situ Fluorescente , Dados de Sequência Molecular , Sequências Repetitivas de Ácido Nucleico , Telômero/ultraestrutura
9.
Plant Cell ; 16(4): 967-76, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15037733

RESUMO

Understanding the organization of eukaryotic centromeres has both fundamental and applied importance because of their roles in chromosome segregation, karyotypic stability, and artificial chromosome-based cloning and expression vectors. Using clone-by-clone sequencing methodology, we obtained the complete genomic sequence of the centromeric region of rice (Oryza sativa) chromosome 8. Analysis of 1.97 Mb of contiguous nucleotide sequence revealed three large clusters of CentO satellite repeats (68.5 kb of 155-bp repeats) and >220 transposable element (TE)-related sequences; together, these account for approximately 60% of this centromeric region. The 155-bp repeats were tandemly arrayed head to tail within the clusters, which had different orientations and were interrupted by TE-related sequences. The individual 155-bp CentO satellite repeats showed frequent transitions and transversions at eight nucleotide positions. The 40 TE elements with highly conserved sequences were mostly gypsy-type retrotransposons. Furthermore, 48 genes, showing high BLAST homology to known proteins or to rice full-length cDNAs, were predicted within the region; some were close to the CentO clusters. We then performed a genome-wide survey of the sequences and organization of CentO and RIRE7 families. Our study provides the complete sequence of a centromeric region from either plants or animals and likely will provide insight into the evolutionary and functional analysis of plant centromeres.


Assuntos
Cromossomos de Plantas/genética , Oryza/genética , Composição de Bases , Sequência de Bases , Centrômero/genética , Cromossomos Artificiais Bacterianos/genética , Cromossomos Artificiais de Bacteriófago P1/genética , Sequência Conservada , Elementos de DNA Transponíveis/genética , DNA de Plantas/química , DNA de Plantas/genética , DNA Satélite/genética , Genoma de Planta , Dados de Sequência Molecular , Mapeamento Físico do Cromossomo , Sequências Repetitivas de Ácido Nucleico
10.
Plant J ; 36(5): 720-30, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14617072

RESUMO

We constructed physical maps of rice chromosomes 1, 2, and 6-9 with P1-derived artificial chromosome (PAC) and bacterial artificial chromosome (BAC) clones. These maps, with only 20 gaps, cover more than 97% of the predicted length of the six chromosomes. We submitted a total of 193 Mbp of non-overlapping sequences to public databases. We analyzed the DNA sequences of 1316 genetic markers and six centromere-specific repeats to facilitate characterization of chromosomal recombination frequency and of the genomic composition and structure of the centromeric regions. We found marked changes in the relative recombination rate along the length of each chromosome. Chromosomal recombination at the centromere core and surrounding regions on the six chromosomes was completely suppressed. These regions have a total physical length of about 23 Mbp, corresponding to 11.4% of the entire size of the six chromosomes. Chromosome 6 has the longest quiescent region, with about 5.6 Mbp, followed by chromosome 8, with quiescent region about half this size. Repetitive sequences accounted for at least 40% of the total genomic sequence on the partly sequenced centromeric region of chromosome 1. Rice CentO satellite DNA is arrayed in clusters and is closely associated with the presence of Centromeric Retrotransposon of Rice (CRR)- and RIce RetroElement 7 (RIRE7)-like retroelement sequences. We also detected relatively small coldspot regions outside the centromeric region; their repetitive content and gene density were similar to those of regions with normal recombination rates. Sequence analysis of these regions suggests that either the amount or the organization patterns of repetitive sequences may play a role in the inactivation of recombination.


Assuntos
Mapeamento Cromossômico/métodos , Cromossomos Artificiais Bacterianos/genética , Cromossomos de Plantas , Oryza/genética , Recombinação Genética/genética , Cromossomos Artificiais/genética , Cromossomos de Plantas/genética , Marcadores Genéticos , Hibridização in Situ Fluorescente
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...